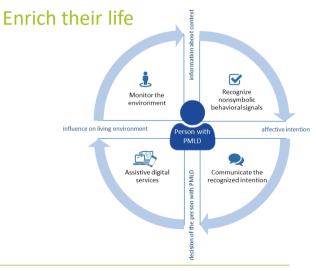


www.insension.eu

Vocalization Recognition of People with Profound Intellectual and Multiple Disabilities (PIMD) Using Machine Learning Algorithms

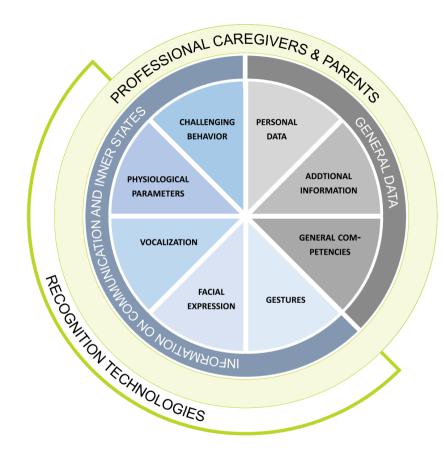
Waldemar Jęśko

waldemarj@man.poznan.pl Poznan Supercomputing and Networking Center, Poznan, Poland Personalized intelligent platform enabling interaction with digital services to individuals with profound and multiple learning disabilities



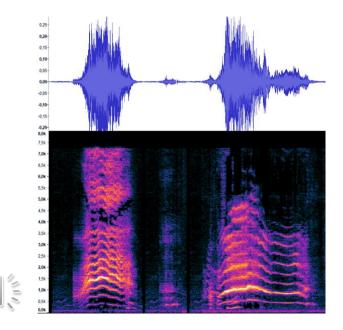
ICT platform main objectives

- Improve the quality of their life
- Increase their ability to selfdetermination


INSENSION platform

Systems

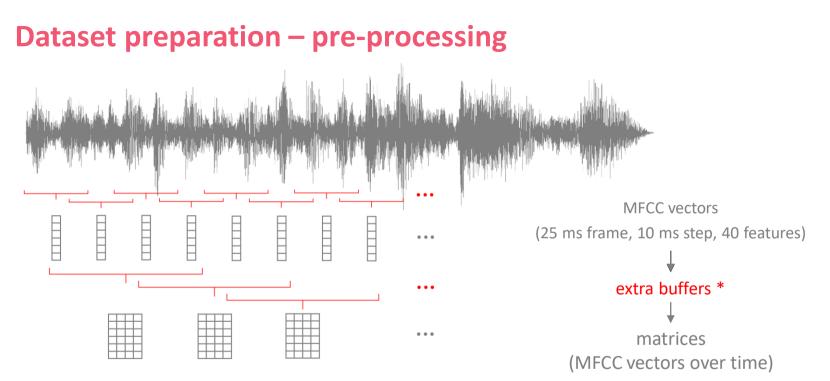
- Physiological Parameters Monitoring
- Vocalization Recognition
- Facial Expression Recognition
- Gesture Recognition


Make decision about

Vocalizations characteristics

- Vocalizations: non-linguistic sound events (non-verbal communication)
- Most common vocalizations types:
 - Animal vocalizations
 - Child vocalizations
 - babbling phase (syllables ta, ma, ba, la etc.)
- Vocalizations of people with PIMD resemble the sounds of vocalizing children at the early stage of speech development

Dataset preparation


- Recording audio sessions of people with PIMD (2 people)
- Preparation of annotations in the ELAN program
- Vocalization instances:

Person		Vo	calizatior	ı exampl	es	
Dangan A	eee	grunt	aaa	moan	eeh	laugh
Person A	83	24	23	20	10	6
Person B	aaa	crying	aeaeae	cough	eee	nge
	133	51	22	11	6	4

Table 1: Number of annotated vocalization instances.

Difficulties in obtaining recordings

- Need to record in specially adapted rooms
- Need for caregivers' participation in the process of recordings
- Limited cooperation from people with PIMD

- * Preliminary research testing:
 - buffer length (50 1000 ms),
 - buffer overlapping (0 90%).

Optimal conf: buffer length: 500 ms, no buffer overlapping

Dataset preparation – final dataset

Buffer	Vocalization examples						
length [ms]	eee	grunt	aaa	moan	eeh	laugh	
50	2198	749	832	901	188	136	
100	1080	368	410	445	92	67	
200	518	178	198	218	43	33	
300	335	114	129	142	28	21	
500	182	65	73	80	15	12	
1000	65	25	31	34	3	4	

 Table 2: Number of samples for tested buffer sizes – Person A.
 Person A.

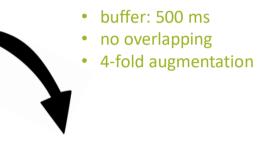
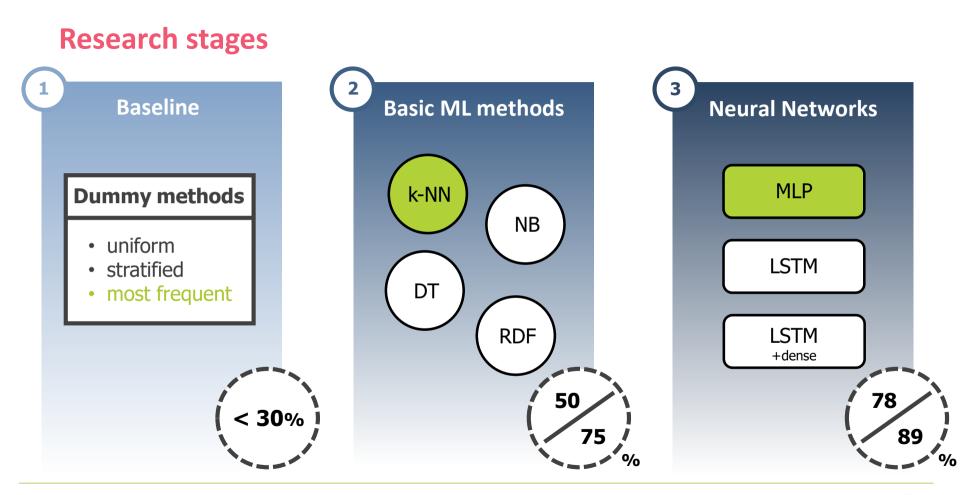


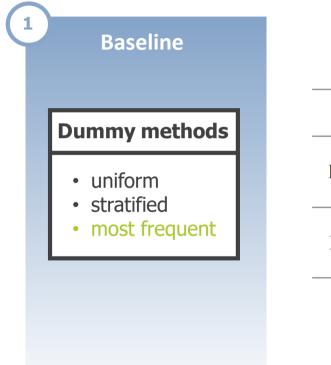
Table 3: *Number of examples in the final dataset* – 500 ms buffer length, no overlapping, 4-fold data augm.

Person	Vocalization examples					
Person	eee	grunt	aaa	moan	eeh	laugh
А	728	260	292	320	60	48
Person	aaa	crying	aeaeae	cough	eee	nge
В	1928	2884	248	56	60	20

Research methodology


- Input: audio signal
- ► 5-fold cross-validation
- data divided into folds at the input audio files level
- ▶ metrics:
 - accuracy (acc)
 - precision (prec)
 - recall (rec)
 - f1-score (f1)

Models classes:


- Person A (7):
 - eee, grunt, aaa, moan, eeh, laugh, bck*
- Person B (7):

aaa, crying, aeaeae, cough, eee, nge, bck*

* background class (*bck*): the remaining parts of the recordings (not being vocalizations) labeled as background

Baseline

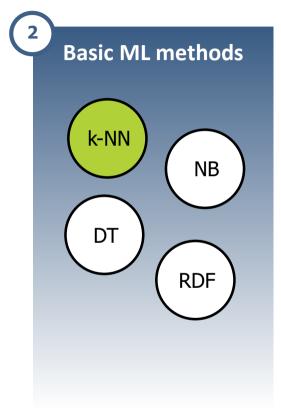


Table 4: Baseline results.

Person	Dummy	Metrics [%]				
I el son	method	acc	prec	rec	f 1	
	uniform	18.1	30.2	18.1	21.4	
Person A	stratified	11.2	17.4	11.2	12.8	
	most frequent	10.3	1.10	10.3	1.90	
	uniform	15.0	32.1	15.0	20.1	
Person B	stratified	14.9	33.0	14.9	19.9	
	most frequent	33.9	11.5	33.9	17.2	

Basic ML methods

Davaan	Metrics	Basic ML algorithms				
Person		k-NN	NB	DT	RDF	
	acc	50.9	49.1	42.2	31.0	
	prec	50.9	47.7	40.6	25.3	
erson A	rec	50.9	49.1	42.2	31.0	
	f1	46.4	47.4	34.5	18.7	
	acc	74.5	66.9	58.1	58.3	
Denne D	prec	76.5	79.8	61.0	69.4	
Person B	rec	74.5	66.9	58.1	58.3	
	f1	73.0	70.9	54.2	53.9	

75

%

Neural Networks

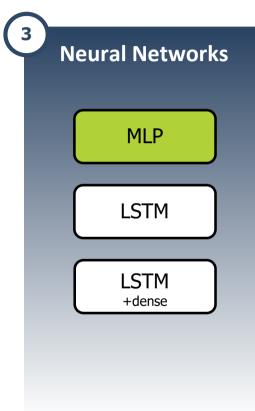
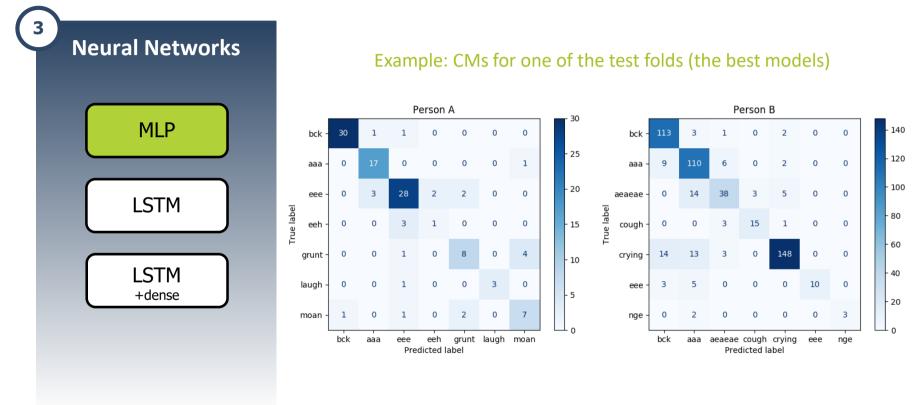



Table 6: Neural networks results.

		NN architectures				
Person	Reg. method	MLP LSTM		LSTM +dense		
	-	70.5	69.1	67.4		
Danson	dropout	76.3	71.7	66.7		
Person A	weight reg.	70.9	72.5	68.2		
	batch norm.	77.3	67.6	67.3		
	many methods	78.1	73.8	76.1		
	-	85.2	86.0	85.2		
Person B	dropout	86.9	86.1	84.9		
	weight reg.	84.5	84.4	83.9		
	batch norm.	86.6	86.5	83.3		
	many methods	88.8	87.3	86.0		

Neural Networks

Results

- ► The **best results** obtained: **80%** (Person A) and **90%** (Person B):
 - feedforward NN: MLP
 - 1-layer with 64 neurons
- ► The **best regularization** method:
 - combination of dropout and batch normalization
- Sufficient for enhancing communication with PIMD people
- Future work:
 - obtain more data
 - extract features with LPC, PLP, RASTA
 - classify with BLSTM, hybrid CNN-LSTM

Results – main findings

- The best results were obtained for neural networks (similar results for MLP and LSTM)
 - promising next step is to examine more NN architectures and feature extraction methods on a larger vocalizations database
- Optimal structure of tested NN:
 - 1 layer with 64 neurons
 - at the input and output of the layer: combination of dropout and batch norm.
 - Conclusions:
 - in this research problem, more extensive (deeper) networks will not be applicable
 - low network complexity (and use of regularization methods) largely prevented overfitting the training data

Waldemar Jęśko

waldemarj@man.poznan.pl Poznan Supercomputing and Networking Center

www.insension.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 780819.

